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GWAS found many genetic variants associated with Chromosome
diseases https://commons.wikimedia.org/wiki/File:GWAS-%C3%9Cbersicht.svg

proteomics

Multiomics help to understand
molecular mechanism

*Gene regulation, functional genomics genomics

Molecular mechanism from variants
to diseases are still unclear
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How to integrate multiomics and find causal variants &
genes & networks for disease

transcriptomics metabolomics @

Gligorijevic' V, Przulj N., J. R. Soc. Interface 12: 20150571.



MULTIVIEW LERRNING FOR UNDERSTANDING
FUNCTIONAL MULTI-OMICS
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« For example, gene regulation Cross-talk patterns:
can relate to w Q.,(fD,f3): SNPs break TF binding sites

1. Genomics; e.g., SNPs Q. (f2.f3): TFs control gene expression

Q. (fD,f2): SNPs associate with gene
expression

2. Transcriptomics; e.g., genes

3. Proteomics; e.g.,
transcription factors (TFs)

Nguyen, Wang, PLoS Computational Biology, 2020




VARMOLE

GRN = Input form 2 views, X,Y (SNPs &
I NY1.X7 genes)
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- From gene expression to phenotypes
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DROP-CONNECT

= Drop-out and drop-connect are 2 simple but effective regularization techniques

The drop-connect mask is GRN or eQTL (4, or 4,)
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INTERPRETATION:
PRIGRITIZATION VIA
INTEGRATED GRADIENTS

= Given a model F, an input x,
and the output F(x) of the
model for input in question, an
attribution methods returns
the ‘relevance’ of each input
feature i to the output

Interpret

with Integrated gradient
Disease (or health)

Link importance
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APPLICATION FOR SCHIZOPHRENIA

= Dataset:

= RNA-seq gene expression & genotype data (dosage) for 487 schizophrenia (scz) vs. 891
non-scz human brain samples (front cortex)

= Embedding GTEx eQTLs & PsychENCODE GRN for human brain front cortex
= = 127304 SNPs, 2598 genes




PRIORITIZED GENE FUNCTIONS &
REGULATORY LINKS FOR SCHIZOPHRENIA

= A list of enriched functions (FDR<0.05) from prioritized genes:
= neuron development

axon guidance
cell adhesion

calcium signaling

response to external stimulus
NMDA receptor
= insulin secretion

= Prioritized SNP-gene pairs

= SNP-gene pairs on the interacting enhancers and promoters (Hi-C) have significantly
higher importance scores (p<5e-5)

= Potential regulatory roles of prioritized SNPs to genes via enhancers




FUTURE WORK

§ Single cell data integration Cell-type gene regulatory networks

Q Additional omics Epigenomics (e.g., ATAC-seq)

@ Deeper phenotypes Imaging, behavior
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EMPIRICAL RISK MINIMIZATION
(ERM) FOR SINGLE-VIEW LEARNING
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Nguyen, Wang, PLoS Computational Biology, 2020

« e.g., Leukemia patient classification

y;: Acute lymphoblastic leukemia
(ALL) vs. Acute myeloid leukemia
(AML)

X;: gene expression

f: SVM (with [ is a hinge loss)
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EMPIRICAL RISK MINIMIZATION FOR
MULTI-VIEW LEARNING (MV-ERM)

¢ loss function
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