VARMOLE: A BIOLOGICALLY DROP-CONNECT DEEP NEURAL NETWORK MODEL FOR PRIORITIZING DISEASE RISK VARIANTS AND GENES

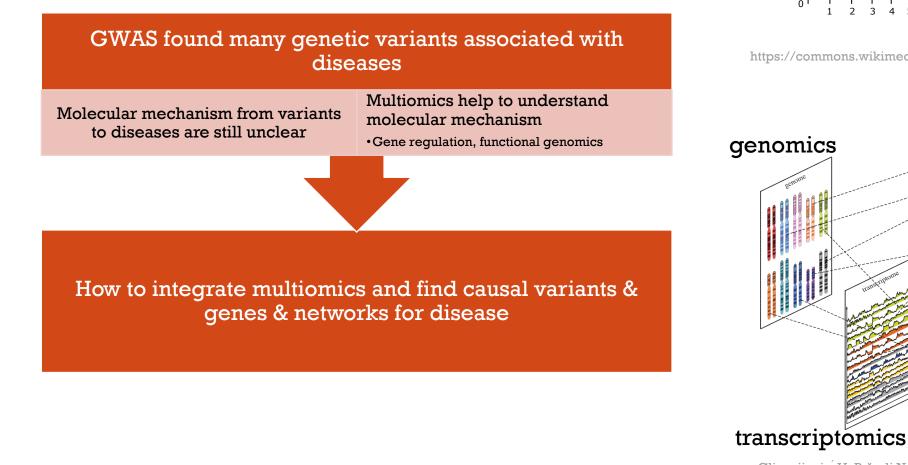
Nam D. Nguyen^{1,3}, Ting Jin^{2,3}, Daifeng Wang^{2,3,*}

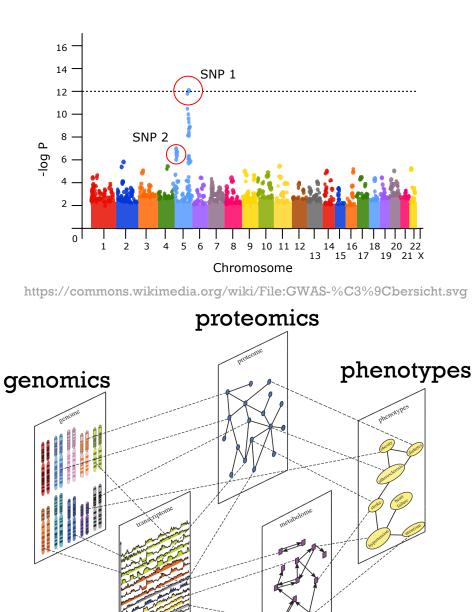
¹Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA

²Deparment of Biostatistics and Medical Informatics, University of Wisconsin-Madison, WI 53726, USA

³Waisman Center, University of Wisconsin-Madison, WI 53705, USA

MOTIVATION

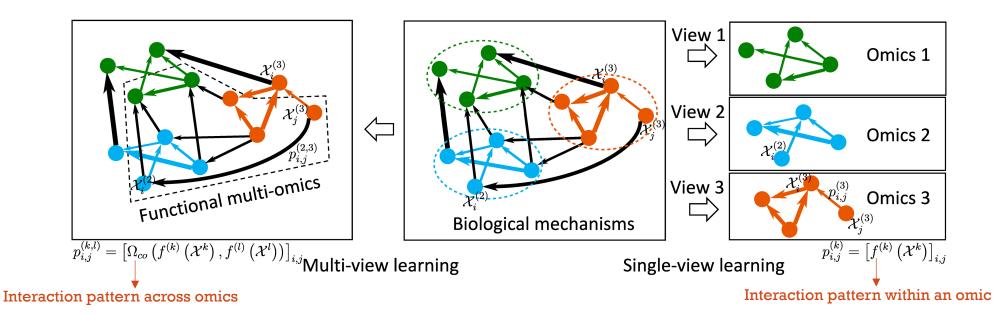




Gligorijevic[°] V, Pr[°]zulj N., J. R. Soc. Interface 12: 20150571.

metabolomics

MULTIVIEW LEARNING FOR UNDERSTANDING FUNCTIONAL MULTI-OMICS



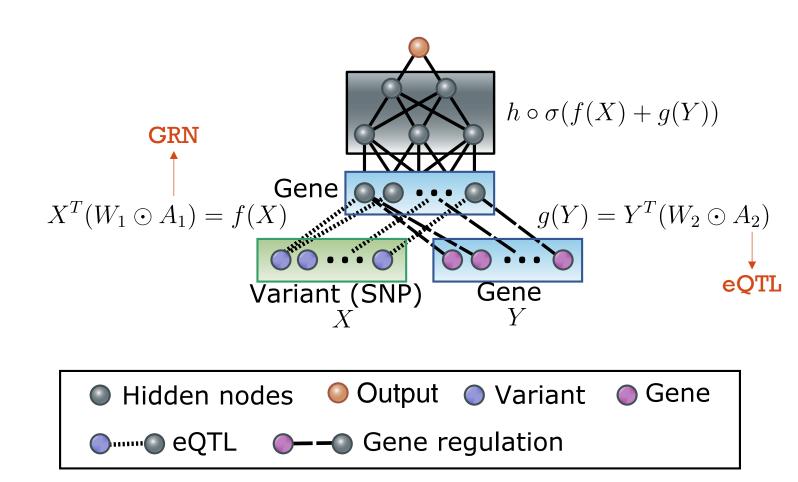
- For example, gene regulation can relate to
 - 1. Genomics; e.g., SNPs
 - 2. Transcriptomics; e.g., genes
 - 3. Proteomics; e.g., transcription factors (TFs)

Cross-talk patterns:

 $\Omega_{co}(f^{(1)}, f^{(3)})$: SNPs break TF binding sites

 $\Omega_{co}(f^{(2)}, f^{(3)})$: TFs control gene expression

 $\Omega_{co}(f^{(1)}, f^{(2)})$: SNPs associate with gene expression



VARMOLE

- Input form 2 views, X, Y (SNPs & genes)
- First layer embed A₁ and A₂ gene regularoty network (GRN) and eQTL

ightarrow From variants (& gene regulations) to gene expression

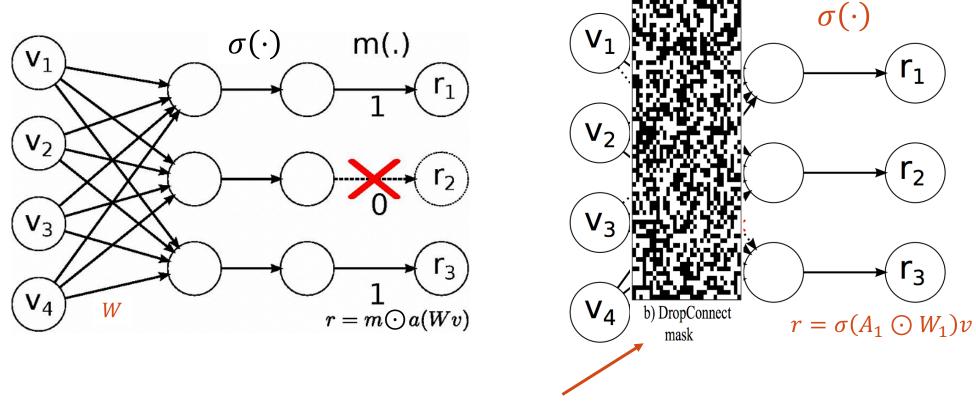
 Other fully connected hidden layers: h;

 \rightarrow From gene expression to phenotypes

- Softmax classification layer: $o = \delta (h \circ \sigma (f(X) + g(Y)));$
- The Cross-Entropy: $L(o, \hat{o}) = -\frac{1}{n \sum_{i=1}^{n} y_i log(\hat{y}_i)}$
- Varmole: min $L(o, \hat{o}) + ||W||_1$

DROP-CONNECT

• Drop-out and drop-connect are 2 simple but effective regularization techniques

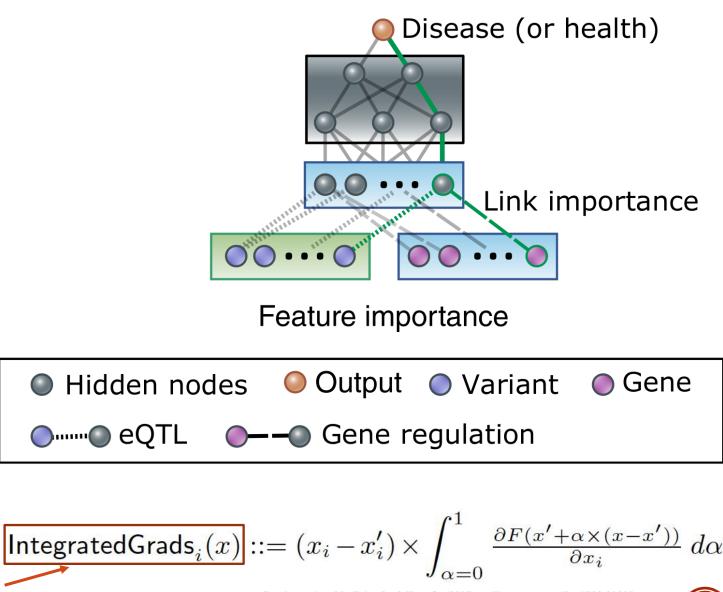


The drop-connect mask is GRN or eQTL (A_1 or A_2)

Interpret with Integrated gradient

INTERPRETATION: PRIORITIZATION VIA INTEGRATED GRADIENTS

 Given a model F, an input x, and the output F(x) of the model for input in question, an attribution methods returns the 'relevance' of each input feature i to the output

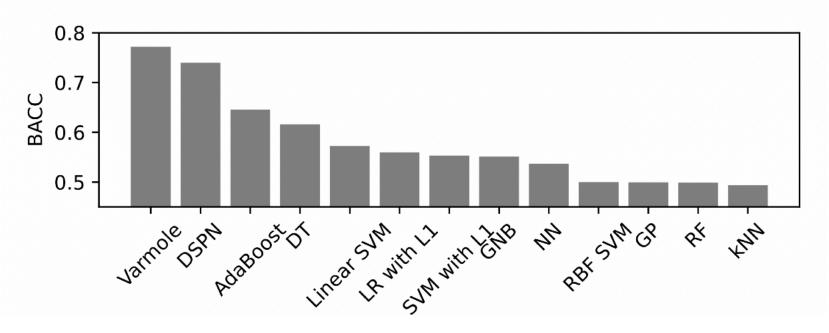


Importance score of feature *i* of input *x*

Sundararajan, M., Taly, A., & Yan, Q. (2017). arXiv preprint arXiv:1703.01365.

APPLICATION FOR SCHIZOPHRENIA

- Dataset:
 - RNA-seq gene expression & genotype data (dosage) for 487 schizophrenia (scz) vs. 891 non-scz human brain samples (front cortex)
 - Embedding GTEx eQTLs & PsychENCODE GRN for human brain front cortex
 - \rightarrow 127304 SNPs, 2598 genes



PRIORITIZED GENE FUNCTIONS & REGULATORY LINKS FOR SCHIZOPHRENIA

- A list of enriched functions (FDR<0.05) from prioritized genes:
 - neuron development
 - axon guidance
 - cell adhesion
 - calcium signaling
 - response to external stimulus
 - NMDA receptor
 - insulin secretion
- Prioritized SNP-gene pairs
 - SNP-gene pairs on the interacting enhancers and promoters (Hi-C) have significantly higher importance scores (p<5e-5)
 - Potential regulatory roles of prioritized SNPs to genes via enhancers

FUTURE WORK

X

Single cell data integration

Cell-type gene regulatory networks

Additional omics

Epigenomics (e.g., ATAC-seq)

Deeper phenotypes

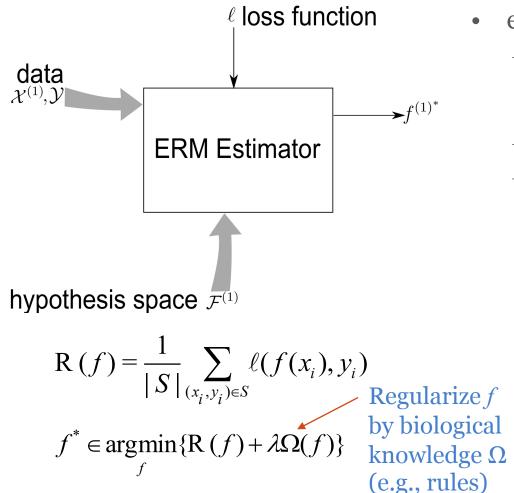
Imaging, behavior

THANK YOU!

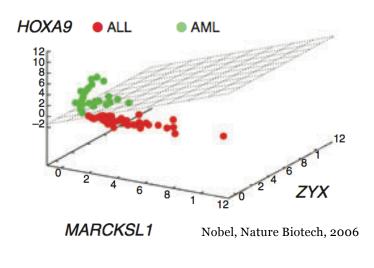
₽

This work has been supported by NIH grants R01AG067025, R21CA237955 and U01MH116492.

EMPIRICAL RISK MINIMIZATION (ERM) FOR SINGLE-VIEW LEARNING

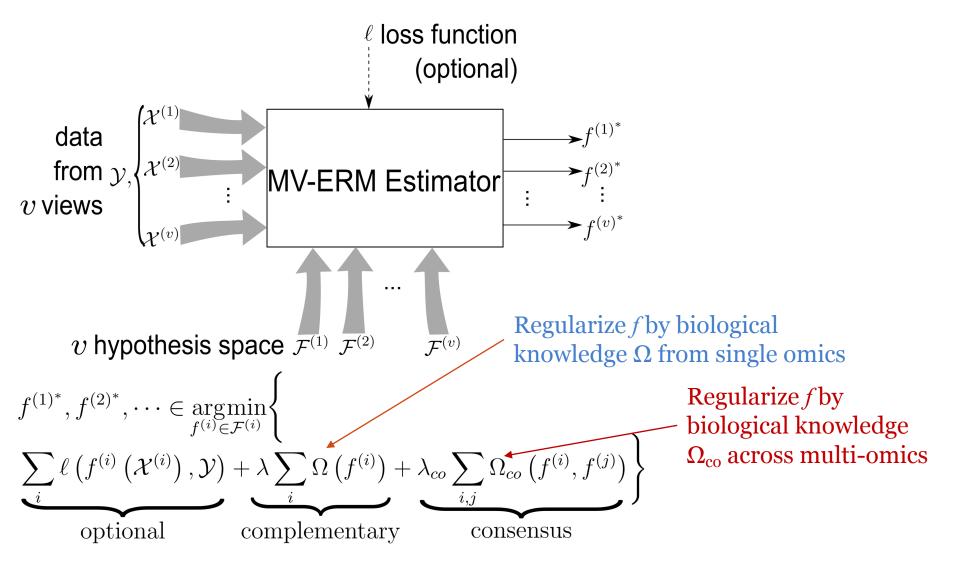


- e.g., Leukemia patient classification
 - *y_i*: Acute lymphoblastic leukemia
 (ALL) vs. Acute myeloid leukemia
 (AML)
 - x_i : gene expression
 - f: SVM (with l is a hinge loss)



Nguyen, Wang, PLoS Computational Biology, 2020

EMPIRICAL RISK MINIMIZATION FOR MULTI-VIEW LEARNING (MV-ERM)



Nguyen, Wang, PLoS Computational Biology, 2020

