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How to integrate multiomics and find causal variants & 
genes & networks for disease

GWAS found many genetic variants associated with 
diseases

Molecular mechanism from variants 
to diseases are still unclear

Multiomics help to understand 
molecular mechanism
•Gene regulation, functional genomics
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• For example, gene regulation 
can relate to
1. Genomics; e.g., SNPs
2. Transcriptomics; e.g., genes
3. Proteomics; e.g., 

transcription factors (TFs)

Ωco(f(2),f(3)): TFs control gene expression 

Ωco(f(1),f(3)): SNPs break TF binding sites

Ωco(f(1),f(2)): SNPs associate with gene 
expression 

Cross-talk patterns:
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Interaction pattern within an omicInteraction pattern across omics
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eQTL Gene regulation

Hidden nodes

§ Input form 2 views, 𝑋, 𝑌 (SNPs & 
genes)

§ First layer embed 𝐴! and 𝐴" −
gene regularoty network (GRN) 
and eQTL

à From variants (& gene regulations) to gene expression

§ Other fully connected hidden 
layers: ℎ;

à From gene expression to phenotypes

§ Softmax classification layer: 𝑜 =
𝛿 ℎ ∘ 𝜎 𝑓 𝑋 + 𝑔 𝑌 ;

§ The Cross-Entropy: 𝐿(𝑜, 1𝑜) =
− !
# ∑!"#

$ %!&'( )%!

§ Varmole: min 𝐿 𝑜, 1𝑜 + 𝑊 !
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§ Drop-out and drop-connect are 2 simple but effective regularization techniques

The drop-connect mask is GRN or eQTL (𝐴! or 𝐴")
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§ Given a model 𝐹, an input 𝑥, 
and the output 𝐹(𝑥) of the 
model for input in question, an 
attribution methods returns 
the ‘relevance’ of each input 
feature 𝑖 to the output

Interpret with Integrated gradient

Importance score of feature 𝑖 of input 𝑥 6
Sundararajan, M., Taly, A., & Yan, Q. (2017). arXiv preprint arXiv:1703.01365.



§ Dataset:
§ RNA-seq gene expression & genotype data (dosage) for 487 schizophrenia (scz) vs. 891 

non-scz human brain samples (front cortex)
§ Embedding GTEx eQTLs & PsychENCODE GRN for human brain front cortex
§ à 127304 SNPs, 2598 genes
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§ A list of enriched functions (FDR<0.05) from prioritized genes:
§ neuron development
§ axon guidance
§ cell adhesion
§ calcium signaling
§ response to external stimulus
§ NMDA receptor
§ insulin secretion 

§ Prioritized SNP-gene pairs
§ SNP-gene pairs on the interacting enhancers and promoters (Hi-C) have significantly 

higher importance scores (p<5e-5)
§ Potential regulatory roles of prioritized SNPs to genes via enhancers
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Single cell data integration Cell-type gene regulatory networks

Additional omics Epigenomics (e.g., ATAC-seq)

Deeper phenotypes Imaging, behavior
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• e.g., Leukemia patient classification
– yi: Acute lymphoblastic leukemia 

(ALL) vs. Acute myeloid leukemia 
(AML)

– xi: gene expression
– f : SVM (with l is a hinge loss)

Nguyen, Wang, PLoS Computational Biology, 2020

Nobel, Nature Biotech, 2006

Regularize f 
by biological 
knowledge Ω
(e.g., rules)
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Regularize f by biological 
knowledge Ω from single omics

Regularize f by 
biological knowledge 
Ωco across multi-omics
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