ManiNetCluster: a manifold learning approach to reveal the functional links between gene networks

- A biological application of multi-view learning

Nam D. Nguyen

Department of Computer Science

Stony Brook University

Introduction

- Biological multi-view data & comparative analysis
- Manifold learning

ManiNetCluster

- Non-linear network embedding & alignment
- Multi-layer network clustering
- Discovering functional links between gene networks

Results

- Aligning cross-species developmental gene networks
- Identifying gene modules, including **function links** between light and dark condition in green algae

Introduction

- Biological multi-view data & comparative analysis
- Manifold learning

ManiNetCluster

- Non-linear network embedding & alignment
- Multi-layer network clustering
- Discovering functional links between gene networks

Results

- Aligning cross-species developmental gene networks
- Identifying gene modules, including **function links** between light and dark condition in green algae

Biological multi-view data integration

Yan, Koon-Kiu, et al. "OrthoClust: an orthology-based network framework for clustering data across multiple species." Genome biology 15.8 (2014): R100.

Multi-view learning

Multiple kernel learning

- learn a combination of <u>predefined</u> kernels
- not data dependent
- expensive
 - non-linear

Subspace learning

- obtains a common latent subspace
- **data dependent** → more general
- non-expensive
- CCA (Canonical Correlation Analysis)
 - linear

ManiNetCluster is a *subspace learning*, **non-linear** and non-expensive (by employing **manifold learning**) to discover <u>functional links</u> across multiple views

Manifold learning

A *d* dimensional manifold *M* is embedded in a *m* dimensional space, and there is and explicit mapping $f: \mathbb{R}^d \to \mathbb{R}^m$ where $d \leq m$. Given samples $x_i \in \mathbb{R}^m$ with noise

$$x_i = f(\tau_i)$$

 \rightarrow find f(.) or τ_i from given x_i

Introduction

- Biological multi-view data & comparative analysis
- Manifold learning

ManiNetCluster

- Non-linear network embedding & alignment
- Multi-layer network clustering
- Discovering functional links between gene networks

Results

- Aligning cross-species developmental gene networks
- Identifying gene modules, including **function links** between light and dark condition in green algae

ManiNetCluster

Manifold alignment for 2 gene networks

2 gene expression profiles
$$\begin{aligned} X &= [x_1, \dots, x_m], x_i \in \mathbb{R}^p \\ Y &= [y_1, \dots, y_n], y_j \in \mathbb{R}^q \end{aligned} \quad x_i \leftrightarrow y_i \ for \ i \in [1, l] \end{aligned}$$

find mapping function $oldsymbol{f}$, $oldsymbol{g}$ to minimize the cost function

$$\sum_{i,j} \left\| f(x_i) - g(y_j) \right\|^2 W^{i,j} + \sum_{i,j} \left\| f(x_i) - f(x_j) \right\|^2 W_X^{i,j} + \sum_{i,j} \left\| g(y_i) - g(y_j) \right\|^2 W_Y^{i,j}$$

global consistency local smoothness

- extract and optimally aligns local geometry to minimize overall differences
- is a generalization of CCA $\sum_{i,j} \|f(x_i) g(y_j)\|^2$
- can be interpreted as a manifold regularization

$$\sum_{i,j} \left\| f(x_i) - g(y_j) \right\|^2 W^{i,j} + tr(\mathbf{f}^T L_X \mathbf{f}) + tr(\mathbf{g}^T L_Y \mathbf{g})$$

Aligned network clustering to reveal the functional links

cluster the embedded datasets simultaneously using k-medoids

→ gene modules $C_1, ..., C_n$ Jaccard similarity $J(C_i) = \frac{|X' \cap Y'|}{|X' \cup Y'|}$ condition number $\kappa(C_i) = \frac{|X'|}{|Y'|}$

 \rightarrow 4 types of gene modules

- Conserved modules $\leftarrow J(C_i)$ is high
- View 1 specific modules $\leftarrow J(C_i)$ is low, and $\kappa(C_i) \gg 1$
- View 2 specific modules $\leftarrow J(C_i)$ is low, and $\kappa(C_i) \ll 1$
- Functional linkage modules $\leftarrow J(C_i)$ is low, and $\kappa(C_i) \approx 1$

Functional linkage score
$$S(C_i) = 1 - \frac{\frac{|1-\kappa(C_i)|}{max(\kappa(C_i))} + \frac{J(C_i)}{max(J(C_i))}}{\max\left(\frac{|1-\kappa(C_i)|}{max(\kappa(C_i))} + \frac{J(C_i)}{max(J(C_i))}\right)}$$

Introduction

- Biological multi-view data & comparative analysis
- Manifold learning

ManiNetCluster

- Non-linear network embedding & alignment
- Multi-layer network clustering
- Discovering functional links between gene networks

Results

- Aligned cross-species developmental gene networks
- Identified gene modules, including **function links** between light and dark condition in green algae

Aligning cross-species gene networks

Identifying gene modules between conditions in green algae

Functional linkage modules of green algae between conditions

Module 34 dark, light, and shared genes patterns

Comparison of ManiNetCluster with other clustering methods

Single-view clustering methods, e.g. WGCNA, cannot automatically identify the links across network

Introduction

- Biological multi-view data & comparative analysis
- Manifold learning

ManiNetCluster

- Non-linear network embedding & alignment
- Multi-layer network clustering
- Discovering functional links between gene networks

Results

- Aligning cross-species developmental gene networks
- Identifying gene modules, including **function links** between light and dark condition in green algae

Discussion & future work

ManiNetCluster:

- multi-view learning
- simultaneously cluster across different species/conditions
- discovers of functional linkage
- outperforms linear methods, e.g., CCA
- is **consistent** with single-view clustering methods, but can **infer cross-view information**

Future work

- single cell omics
- more NGS data (ChIP-seq, ATAC-seq, etc.)
- diseases (Brain disorders, cancers, etc.)

Acknowledgment

- Dr. Daifeng Wang & Dr. Ian Blaby
- This work was supported by a Stony Brook University/Brookhaven National Laboratory seed grant to Daifeng Wang and Ian K.Blaby.
- ► NSF travel award ICIBM 2019.

Daifeng Wang Lab (daifengwanglab.org) is moving to Univ. of Wisconsin - Madison. Postdoc positions available (daifeng.wang@wisc.edu)

Thank you!

Aligning cross-species gene networks

